韩志林

基本信息姓名韩志林
系别力学教研中心
职称副教授
联系方式见学院黄页
电子邮件hanzhilin@dhu.edu.cn
研究方向计算固体力学、纳米尺度唯象理论数值算法研究
个人简介主要利用事边界元法、有限元法、等几何分析方法从事弹性力学、热弹性力学等耦合物理场的固体力学数值算法研究。
学习经历起止年月学校专业学位/学历
2013/09 - 2018/12合肥工业大学工程力学博士学位
2009/09 - 2013/6合肥工业大学工程力学学士学位
工作经历起止年月单位职称/职务
2023/09 – 至今 东华大学 理学院 力学中心副教授
2019/05 - 2023/08东华大学 理学院 力学中心讲师
代表性论文&科研
[1]Han Z, Zemlyanova AY, Mogilevskaya SG. Two-dimensional problem of an infinite matrix reinforced with a Steigmann-Ogden cylindrical surface of circular arc cross-section. Int J Eng Sci 2024, 194: 103986.
[2]Han Z, Mogilevskaya SG, Zemlyanova AY. On the problem of a Gurtin–Murdoch cylindrical material surface embedded in an infinite matrix. Int J Solids Struct 2023, 112617.
[3]Shen, Yuang, Han Z*, Liang Y, Zheng X. Mesh reduction methods for thermoelasticity of laminated composite structures: Study on the B-spline based State Space Finite Element Method and Physics-Informed Neural Networks. Eng Anal Bound Elem 2023, 475-487.
[4]Han Z, Pan W, Cheng C, Hu Z, Niu Z. A semi-analytical treatment for nearly singular integrals arising in the isogeometric boundary element method-based solutions of 3D potential problems. Comput Meth Appl Mech Eng 2022, 398: 115179.
[5]Han Z, Gu Y, Zheng X, Liu JX, Zhang GJ, Liang Y. Ultrahigh elasticity and anomalous softening of α-Ag2S under pressure. Chem Phys Lett 2022, 802: 139801.
[6]Han Z, Mogilevskaya SG, Baranova S, Schillinger D. BEM-based second-order imperfect interface modeling of potential problems with thin layers. Int J Solids Struct 2021, 230: 111155.
[7]Han Z, Mogilevskaya SG, Liang Y, Cheng C, Niu Z. Numerical study of the Gurtin-Murdoch model for curved interfaces: benchmark solutions and analysis of curvature-related effects. J Mech Mater Struct 2021, 16(1): 23-48.
[8]Han Z, Gu Y, Liang Y, Zheng X. BEM-based algorithm for composite materials with Gurtin-Murdoch interfaces: Error analysis and effective parameters. Mech Adv Mater Struct 2020: 1-48.
[9]Han Z, Huang Y, Cheng C, Liang Y, Hu Z, Niu Z. The semi-analytical analysis of nearly singular integrals in 2D potential problem by isogeometric boundary element method. Int J Numer Meth Eng 2020, 121(16): 3560-3583.
[10]Han Z, Stoter SKF, Wu CT, Cheng C, Mantzaflaris A, Mogilevskaya SG, Schillinger D. Consistent discretization of higher-order interface models for thin layers and elastic material surfaces, enabled by isogeometric cut-cell methods. Comput Meth Appl Mech Eng 2019, 350: 245-267.
[11]Han Z, Cheng C, Yao S, Niu Z. Determination of stress intensity factors of V-notch structures by characteristic analysis coupled with isogeometric boundary element method. Eng Fract Mech 2019, 222: 106717.
[12]Han Z, Mogilevskaya SG, Schillinger D. Local fields and overall transverse properties of unidirectional composite materials with multiple nanofibers and Steigmann-Ogden interfaces. Int J Solids Struct 2018, 147: 166-182.
[13]Han Z, Cheng C, Hu Z, Niu Z. The semi-analytical evaluation for nearly singular integrals in isogeometric elasticity boundary element method. Eng Anal Bound Elem 2018, 95: 286-296.